1. After surveying math majors at a local university, Mr. Sullivan finds that $33 \%$ have a bicycle, $28 \%$ have a car, and $12 \%$ have both. Use a Venn Diagram to find the probability that a randomly selected student:
a. owns a bicycle and not a car.
b. owns neither a bicycle nor a car.
c. $P($ bicycle |car)?
d. owns a bicycle or a car, but not both
e. P(car | bicycle)?
f. Is taking owning a car independent of owning a bicycle? Justify!
2. We surveyed students and asked if they enrolled in two popular electives:
a. Draw a Venn Diagram that represents the probabilities in the table.

|  | Band |  |  |
| :--- | :--- | :--- | :--- |
|  | Yes | No |  |
|  | Yes | 0.12 | 0.35 |
|  | No | 0.18 | 0.35 |

b. Find $P($ Band $\mid J R O T C)$.
c. Find $\mathrm{P}(\mathrm{JROTC} \mid$ Band $)$.
d. $P($ Band $)$.
e. What is the probability that a student is enrolled in EITHER a Band or JROTC, but not both?
f. Is enrolling in band independent of enrolling in JROTC? Show why below.

1. After surveying math majors at a local university, Mr. Sullivan finds that $33 \%$ have a bicycle $28 \%$ have a car, and $12 \%$ have both. Use a Venn Diagram to find the probability that a randomly selected student:
a. owns a bicycle and not a car.

b. owns neither a bicycle nor a car.


$$
0.51
$$

c. P(bicycle | car)? $\mathrm{BoTh} \xrightarrow{0.12}=0.42857$
all"car" $\longrightarrow 0,28$
d. owns a bicycle or a car, but not both

$$
0.21+0.16=0.37
$$

e. P(car | bicycle)?
all bike $\longrightarrow \frac{0.12}{6.33}=0.36 \overline{36}$
f. Is taking owning a car independent of owning a bicycle? Justify!

$$
\begin{aligned}
& P(C A R)=P(\text { CAR } \mid B \| K E) \\
& 0,28=0,3636
\end{aligned}
$$

2. We surveyed students and asked if they enrolled in two popular electives: independent. Electives

b. Find $P($ Band $\mid J R O T C)$.
c. Find P(JROTC | Band ).
d. $P$ (Band). $\bigcirc, 30$
$\frac{\text { BoTH }}{\text { JROTC }}=\frac{0.12}{0.47}=0.255 \quad \frac{\text { BoTH }}{\text { Band }}=\frac{0.12}{0.30}=0.4$
e. What is the probability that a student is enrolled in EITHER a Band or JROTC, but not both?

$$
0.35+0.18=0.53
$$

f. Is enrolling in band independent of enrolling in JROTC? Show why below.

$$
\begin{aligned}
P(\text { Band })=P(\text { Band } \mid J \operatorname{ROT} C) & \text { Because } P(\text { Band }) \neq \\
0.30 \neq 0.255 & P \text { (Band } \mid J R O T C) \text {, they are } \\
& \text { not independent, }
\end{aligned}
$$

