For each equation, identify the initial value (I.V.) and the percent change.			
1. $f(x) = 0.7(1.65)^x$	$2. f(x) = -0.2(2.505)^x$	3. $f(x) = 5.79(1.5)^{-x}$	4. $f(x) = 34(0.8)^{-x}$
I.V	I.V	I.V	I.V
% change:	% change:	% change:	% change:
5. $f(x) = 3(0.9998)^x$	$6. f(x) = 0.42(1.001)^x$	$7. f(x) = 0.9(0.85)^x$	8. $f(x) = 12(0.003)^x$
T T 7	IV	I.V	I.V
I.V	I.V	1. v	
% change:	% change:	% change:	% change:
C			

Exponential Modeling: Identifying Multipliers Many ways of changing a number can be accomplished through a single multiplication. Fill in this chart with the multiplier that would accomplish each of the described changes. Three examples are shown to get you started.

- 9. You purchase a Mr. Brust Bootlegged Quadratic Formula VCR tape for \$2.50. Three years later, its value is \$2.88.a. Create an exponential model that represents the value of the VCR tape.
 - b. Find the value of the card in ten years.
- 10. Mr. Bean bought an authenticated signed Karl-Malone jersey for \$200 in 2015. In 2017, it was worth \$230.
- 11. Create a function, F(x), that models the value of the jersey over time. Tell what F(7) represents.
 - b. Estimate the value of the jersey in the year 2025 to the nearest dollar.
- 11. The cost of goods and services in a particular city increased by 2.5% last month. If this rate continues, what will be the *annual* rate of increase?

Answers:

10. $F(x) = 200(1.0728)^x$ b. F(10) = 5402 11. $F(x) = 3(1.025)^{x/12}$ 5.79, %-Change: 33% decrease
4. IV: 34, %-Change: 25% increase
5. IV: 3, %-Change: 0.2% increase
5. IV: 12, %-Change: